terça-feira, 25 de agosto de 2009

Vejamos agora os efeitos do consumo de corrente sobre as tensões da rede, tensão do neutro e aterramento. A figura 9 mostra duas situações. Em (A), os computadores e equipamentos estão todos desligados, e em (B) estão todos ligados. Usamos exemplos reais da instalação de um pequeno CPD em uma sala, com 5 computadores, 5 monitores duas impressoras a jato de tinta e uma impressora a laser. O ponto indicado como (1) é o quadro de disjuntores. Neste ponto existe um aterramento, porém a tensão entre o fase e o neutro não é exatamente 127 volts. O valor medido foi 122,4 volts, causado por queda de tensão na fiação que vai do poste até o quadro de disjuntores. O ponto (2) é a primeira tomada da sala onde estão os computadores. Levamos em conta a tomada que tem um caminho mais curto em metragem de fios até o quadro de disjuntores. O ponto 3 é a tomada onde está efetivamente ligado o computador. Em um caso particular esta tomada pode ser a mesma do ponto (2), mas estamos levando em conta o caso geral, no qual podemos ligar os equipamentos em uma tomada mais distante, ou depois de extensões. Na situação A os equipamentos estão desligados. Sendo assim não existe corrente elétrica entre os pontos 2 e 3. As mesmas tensões medidas em (2) são também medidas em (3). Note ainda que a tensão entre fase e neutro no ponto (2) é de 121,2 volts, e não 122,4 volts. Esta diferença de 1,2 volts existe devido à queda de tensão na fiação entre os pontos 1 e 2. Este queda existe porque ao longo deste trecho existem outros dispositivos consumindo corrente, como lâmpadas, geladeira, cafeteira ou qualquer outro tipo de carga. Esta queda de tensão é distribuída em duas partes iguais, uma no fio fase e outra no neutro (isto ocorre desde que ambos os fios usem a mesma bitola, o que é normal). Sendo assim existe uma queda de tensão de 0,6 volts no neutro e no fase. Se tivéssemos um terra perfeito no ponto (3), obtido por exemplo por uma ligação com um vergalhão ou cano de ferro, mediríamos uma tensão de 0,6 volts no neutro. O neutro teoricamente deveria ter uma tensão de 0 volts, mas devido à queda de tensão ao longo da fiação, acaba apresentando alguma voltagem, apesar de pequena. Na situação (B), todos os equipamentos foram ligados, resultando em uma carga total de cerca de 2000 watts. A corrente na fiação é agora maior, e existe maior queda de tensão. O trecho 2-3 no nosso exemplo é formado por 20 metros de fio bitola 16, ao longo dos quais existem as tomadas ligadas aos equipamentos. As medidas de tensão foram feitas no computador ligado à última tomada, no qual a queda de tensão é maior. Note que devido à maior corrente, a tensão entre o fase e neutro na primeira tomada caiu para 118,2 volts, e na última tomada, para 116,8 volts. Essas reduções ocorrem devido às quedas de tensão ao longo da fiação, que agora são de 2,1 volts no trecho
1-2 e 0,7 volts no trecho 2-3. Observe que a queda em 2-3 foi bem menor que em 1-2, devido ao uso do fio 16, bem adequado para a carga utilizada. A fiação antiga, no trecho 1-2 é a responsável pela maior queda. Observe agora a tensão no neutro do último computador. É igual à soma das quedas de tensão ao longo do fio neutro nos trechos 1-2 e 2-3, ou seja, 2,8 volts. Com mais 2,8 volts de queda ao longo do fase, são ao todo 5,6 volts de queda. A tensão entre fase e neutro que sobra para o último computdor é de apenas 116,8 volts, mas ainda é suficiente para manter o computdor funcionando. Esta análise de um caso real exemplifica dois fatos importantes em uma
instalação elétrica:

1) As quedas de tensão ao longo da fiação resultam em uma tensão menor entre fase e neutro no aparelho ligado à rede.



2) O potencial do fio neutro, que teoricamente é zero, apresenta na prática um valor maior, devido às quedas de tensão ao longo da fiação.

0 comentários:

Postar um comentário

TEMPO E TEMPERATURA

Sample Text

oi

Popular Posts